Гипохлорит Натрия Опасен

Опасна ли хлорированная вода

Хлор и гипохлорит натрия используют для обеззараживания водопроводной воды в городах и поселках городского типа. Это дешевый и удобный, но не самый безопасный метод. В этой статье поговорим о том, чем именно полезен хлор, чем он опасен, а также наносит ли он вред здоровью в тех дозах, которые содержатся в водопроводной воде.

Самым безопасным и эффективным способом очистки является фильтрация: с хлором и его соединениями отлично справляются угольные фильтры. Для очистки питьевой водопроводной воды подходят проточные фильтры, которые врезаются в водопровод и устанавливаются под мойкой. Обычно в таком фильтре кроме угольного картриджа есть еще несколько ступеней очистки, поэтому вода очищается от комплекса загрязнений: ила, песка, окалины, солей жесткости, железа, хлора, мутности, цветности, привкуса и запаха.

Научный медицинский «Журнал аллергологии и клинической иммунологии» опубликовал интересное исследование канадских и французских ученых. Они выявили, что 18 из 23 спортсменов, которые тренируются в бассейнах с хлорированной водой, страдают от одного из видов аллергии, а также имеют изменения в легких аналогичные изменениям у больных астмой.

В малых дозах эти соединения не опасны, но они накапливаются в организме и со временем приводят к обострению хронических и развитию новых заболеваний, в том числе онкологических. Чаще всего употребление хлорированной воды вызывает рак мочевого пузыря, почек, желудка, кишечника, гортани и молочной железы, а также способствует развитию атеросклероза, гипертонии, болезней сердца, анемии.

При очистке воды из скважины также иногда приходится использовать гипохлорит натрия. Например, при большом содержании железа — от 6 мг/л и более — гипохлорит натрия необходим для процесса окисления железа. В итоге очищенная от железа и других загрязнений вода становится хлорированной.

Обработка посуды полным погружением в раствор. После окончания времени экспозиции тщательно промывают под проточной водой. Обычно мы не рекомендуем использовать Domestos для мытья посуды, однако текущая ситуация и карантин требует особых мер защиты от вируса;

В Российской Федерации гипохлорит натрия выпускается в различной концентрации. От неё зависит область применения данного вещества. Присутствие в составе гипохлорита натрия активного хлора обуславливает его отбеливающие и дезинфицирующие качества. Большое распространение раствор получил благодаря своей способности уничтожать многие опасные бактерии и грибки. Они «умирают» уже через несколько секунд после контакта с химическим соединением:

Исследования и опыт применения для дезинфекции в домашних условиях показывают высокую эффективность гипохлорита натрия. Инструкция к нему сообщает, что вещество применяется для дезинфекции, как профилактической, так и заключительной. Процесс обеззараживания можно проводить замачиванием в растворе, орошением, мытьём. Не подойдёт он лишь для обработки цветного белья, окрашенных тканей и металлических изделий, если у них отсутствует антикоррозийная защита. Хозяйки, бесспорно, чаще используют не чистый раствор, а безопасные современные дезинфицирующие средства с гипохлоритом натрия в качестве действующего вещества. Мы не рекомендуем рисковать и пытаться подготовить раствор гипохлорита натрия в домашних условиях самостоятельно: это может быть опасно. Доверьте современным универсальным чистящим средствам. В универсальных чистящих гелях и спрее Domestos

Следует соблюдать осторожность при работе с гипохлоритом натрия. Инструкция по применению содержит описание всех рекомендуемых мер личной безопасности. Пользуйтесь средствами защиты для глаз и лица, перчатками. После окончания работ тщательно вымойте руки. В случае попадания на кожу, ее необходимо тщательно промыть водой.

Гипохлорит натрия применяют и на предприятиях пищевой промышленности. Как правило, порча продуктов на производстве вызывается микроорганизмами, попадающими на сырьё с плохо очищенных поверхностей оборудования, воды, воздуха, одежды персонала. Но главным источником бактерий, конечно, является пыль и загрязнения, скапливающиеся в труднодоступных местах, которых на производстве предостаточно: крышки баков и чанов, производственные трубопроводы, сложное громоздкое оборудование. Поэтому гипохлорит натрия активно применяют в дезинфекции поверхностей, загонов для скота, различных промывок баков и резервуаров, уничтожения появляющихся ракообразных и моллюсков. Он наиболее пригодный для этих целей и показал себя как экономичное средство.

Натрия Гипохлорит

Гипохлорит Натрия производится в огромных количествах. Около половины синтезированного вещества применяют в бытовой химии и медицине, остальное – в промышленности. Существует два метода производства средства: химический, хлорирование водного раствора натрия гидроксида (концентрированный и основной) и электролитический, используют электролизные установки для электролиза водного хлорида натрия.

Химическое соединение может оказывать вредное воздействие на организм человека, при вдыхании оказывать удушающий и раздражающий эффект. При попадании средства в глаза вещество вызывает химический ожог, может привести к потере зрения. Средство раздражает кожу, в больших концентрациях вызывает отмирание тканей, язвы и ожоги. После приема внутрь 3-6% раствора у человека развивается ацидоз, раздражение пищевода, более высокие концентрации могут вызвать перфорацию пищеварительного тракта. Несмотря на это, при соблюдении рекомендации по использованию препаратов, воды и бытовой химии, гипохлорит считается достаточно безопасным средством. Не обладает канцерогенными, мутагенными и тератогенными средствами. Токсическая доза при внутривенном введения для человека составляет 45 мг на кг веса; пероральная – 1 грамм на кг. Также считается, что вещество не создает экологических проблем, так как в окружающей среде быстро разлагается до воды, кислорода и поваренной соли. Класс опасности для концентрированных растворов (до 20%): 1 – по химической активности; 3 – опасность для здоровья человека. Не территории Российской Федерации гипохлорит Na выпускают по ГОСТу 11086-76.

  • в качестве отбеливателя ткани, древесины и других продуктов;
  • при промышленной и санитарно-гигиенической обработке зерна, трубопроводов, резервуаров в виноделии и пивоварении и т. д.;
  • в химическом производстве антраниловой кислоты, хлорпикрина, аскорбиновой кислоты, крахмала, а аналитической химии при фотометрии;
  • для обеззараживания и очистки промышленных стоков и воды в системах коммунального водоснабжения;
  • в пищевой промышленности и фармацевтике;
  • в военном деле при дегазации отравляющих веществ.

Вещество используют в бытовой химии, его часто можно обнаружить в составе отбеливателей, средств для дезинфекции и очистки. В медицине используют наружно или местно в качестве противовирусного, бактерицидного и противогрибкового средства; в небольших концентрациях — для обработки операционных ран, в гинекологии и акушерстве, оториноларингологии, в стоматологии (эндодонтия).

По своим химическим свойствам – это сильный окислитель. Гипохлорид легко разлагается до хлорида Na и кислорода, при нагревании подвергается диспропорционированию. В воде диссоциирует на ионы. Вещество подвергает коррозии большинство металлов.

Перевозка гипохлорита натрия

Гипохлоритом натрия называется натриевая соль хлорноватистой кислоты, представляющая собой нестабильное соединение, легко разлагающиеся с выделением кислорода. Легко растворяется в жидкостях. Не горит, взрывобезопасна. Чрезвычайно сильный окислитель и разъедает практически все металлы.

Перевозка гипохлорита натрия автотранспортом в сухом виде в мешках может осуществляться тентованными автомобилями, либо доставка гипохлорита натрия в виде раствора цистернами, танк-контейнерами или другими емкостями. Для защиты от коррозии используются гуммированные цистерны, полиэтиленовые или стеклопластиковые емкости. При перевозке гипохлорита натрия резервуары должны заполняться на 90 процентов и температура доставки не должна превышать 35 градусов. Горловины необходимо оснастить клапанами для сброса излишков кислорода, который выделяется при распаде продукта.

Показания к приему Гипохлорита натрия Применение Гипохлорита натрия в виде антисептических растворов показано преимущественно для местного использования в качестве бактерицидного, противовирусного, а также противогрибкового средства при проведении обработки кожных покровов, слизистых оболочек и раневых поверхностей. В стоматологической практике Гипохлорит натрия широко применяется в качестве антисептических ирригационных растворов.

В состав бытовой химии входит множество вредных веществ, которые не только вредят хрупкой экосистеме, но и весьма пагубно влияют на здоровье человека, приводя рано или поздно к хроническим заболеваниям человека. Производители утверждают, что в товарах бытовой химии количество вредных веществ минимально, но «забывают» упомянуть такой факт, как совокупное воздействие всех компонентов, которое наносит реальный вред здоровью:

Область применения гипохлорита натрия можно разделить на две группы: 1. Бытовое использование включает в себя: ü использование в качестве средства для дезинфекции и антибактериальной обработки; ü использование для отбеливания тканей; ü химическое растворение санитарно-технических отложений.

Применяется в химической промышленности, для получения отбеливающих и дезинфицирующих средств, для дезинфекции воды питьевого назначения в системах водоподготовки, для обеззараживания воды в плавательных бассейнах и аквапарках, бытовых и промышленных сточных вод, для дезинфекции территорий, тары и оборудования.

Гипохлорит натрия обеспечивает эффективную дезинфекцию против всех известных патогенных (болезнетворных) бактерий, вирусов, грибковых инфекций и простейших. Гипохлорит натрия не горюч и не взрывоопасен. Гипохлорит натрия – более активный, чем хлор, малотоксичный, безопасный в эксплуатации и более простой в применении. Поставка реагента в виде технического гипохлорита не представляет серьёзной опасности для окружающих территорий. Вследствие того, что гипохлорит натрия поставляется и применяется в жидком виде, хранить и утилизировать его в случае утечки гораздо проще, чем газообразный хлор. [2]

Так как в нормальных условиях водные растворы постепенно разлагаются с выделением кислорода, при хранении это нужно учитывать, заполняя емкость не полностью и периодически сбрасывая образовавшийся кислород. С течением времени водный раствор теряет свою активность.

NaOCl, несмотря на свою химическую активность, считается практически безвредным для экологии. В конечном счете, он разлагается на кислород, воду и хлорид натрия — совершено безопасные вещества. Длительные научные исследования доказали, что реактив в рекомендованных концентрациях не обладает канцерогенным действием, не вызывает аллергии. Напротив, очистка воды с помощью гипохлорита натрия позволяет избавиться от многих опасных хлорорганических соединений, фенолов, токсинов.

Работы с растворами NaOCl должны проводиться с соблюдением техники безопасности и средств защиты. Концентрированные растворы вызывают химический ожог, особенно опасный для глаз — вплоть до полной потери зрения. Воздействие на кожу может привести к раздражению и язвам. Проглатывание — к ожогу пищевода, в тяжелом случае — к прободению ЖКТ. Вдыхание выделяющегося хлора приводит к токсикации, человеку становится трудно дышать.

Гипохлорит натрия — очень сильный окислитель; легко вступает в реакции с солями щелочных металлов, аммиаком, оксидами металлов, щелочами. Обладает ярко выраженным коррозионным воздействием на многие металлы. К гипохлориту натрия устойчивы почти все пластики, фторопласты, поливинилхлорид, многие резины, поэтому хранят его, обычно, в стальных емкостях с резиновым покрытием.

Гипохлорит натрия — неорганическое вещество, соль хлорноватистой кислоты с формулой NaOCl. Реактив применяется давно, поэтому его также называют, по исторической традиции, жавелевой или лабарраковой водой.

Гипохлорит Натрия Опасен

Гипохлорит натрия по степени воздействия на организм человека по ГОСТ 12.1.007-76 относится ко 2 классу высоко опасных веществ. Сильный окислитель, вызывает раздражение кожных покровов и слизистых оболочек — попадание на кожу может привести к ожогам, а в глаза — жжению и слезотечению.

Рекомендуем прочесть:  Что положено при рождении 4 ребенка в 2023 году ростов на дону

Для целей очистки бытовой воды используются разбавленные растворы гипохлорита натрия: типовая концентрация активного хлора в них составляет 0,2—2 мг/л против 1—16 мг/л для газообразного хлора. Разбавление промышленных растворов до рабочей концентрации производят непосредственно на месте.

При соответствующих концентрациях в окружающей среде Гипохлорит натрия может вызвать поражение живых организмов, разрушать растительные ткани. При попадании в водные объекты вызывает изменение органолептических свойств воды, процессов самоочищения воды в водных объектах.

По оценке российских экспертов, около 50-60 % всего гипохлорита натрия используется в качестве отбеливателя и 40-45 % для нужд дезинфекции и очистки, причём последнее направление имеет тенденцию к росту. Наиболее распространённое направление промышленного использования гипохлорита (60 %) — дезинфекция промышленных и бытовых сточных вод.

4. Индивидуальная защита персонала должна осуществляться с применением специальной одежды в соответствии с ГОСТ 12.4.011-89 и индивидуальных средств защиты: универсальных респираторов типа «РПГ-67», «РУ-60М» с патроном марки В, противогазов марок В или ВКФ по ГОСТ 12.4.121- 83, перчаток резиновых, сапог резиновых, очков защитных по ГОСТ 12.4.013-85.

Рационально использовать в работе полный набор медикаментозных средств «ЭндоЖи», обладающих уникальной особенностью. Все они помимо основного функционального компонента содержат антимикробные средства разного спектра действия. Так, в «ЭндоЖи № 2» и в «ЭндоЖи гель» входит цетримид, в кровоостанавливающий «ЭндоЖи № 4» — хлористый алюминий, а «ЭндоЖи № 3» предназначен для мощной дезинфекции корневых каналов, поскольку содержит 2,5% глютаровый альдегид,— химический стерилизатор, действующий и на спорообразующие формы микроорганизмов.

Меняются, разнообразятся и формы выпуска гипохлорита. Новинка этого года — предлагаемый фирмой «ВладМиВа» «Гель 3% гипохлорит». Поскольку препарат не растекается, остается на том месте, куда его нанесли, то он будет полезен в тех случаях, когда нужно активное поверхностное воздействие, но щадящее влияние на подлежащие ткани. В ряде случаев слабые растворы гипохлорита можно заменить этим высокоактивным гелем, способным повысить эффективность обеззараживания, сохранив биологический подход к лечению.

Думается, это связано с той узкой ролью, которая отводится гипохлориту только как обеззараживающей ирригационной жидкости для вымывания дентинных опилок из корневых каналов перед сменой эндодонтического инструмента на другой размер, без учета химических процессов, происходящих при этом.

У эндодонтической иглы выходное отверстие расположено не в торце, а сбоку, что создает возможность обратного тока жидкости и промывания канала при ее ротации. Игла может надеваться на обычный одноразовый шприц. Материал иглы позволяет использовать ее многократно после проведения предстерилизационной обработки и стерилизации вместе со стоматологическим набором инструментов.

Соблюдение таких простых правил применения гипохлорита, варьирование концентраций растворов позволит избежать осложнений при эндодонтическом лечении. Концентрация, указанная на упаковке, не должна быть догмой, а служить исходной цифрой при приготовлении соответствующего клинической ситуации раствора.

Введение в периферическую вену раствора гипохлорита натрия в концентрации свыше 300 мг/л, увеличение скорости введения или недостаточная скорость венозного кровотока, а также введение раствора в ткани вне вены может привести к флебиту, деструкции стенки сосуда и образованию паравенозного инфильтрата. Клинически это проявляется острой болью по ходу вены, отечностью мягких тканей, нарушением региональной микроциркуляции. В этом случае немедленно прекращают инфузию и проводят местное обкалывание зоны инфильтрации 0,25% раствором новокаина при необходимости с 60 мг преднизолона, вводят внутримышечно ненаркотические анальгетики (2 мл 50% раствора анальгина) и накладывают спиртовой компресс.

Флаконы с приготовленным раствором гипохлорита натрия хранятся при комнатной температуре в течение 3 дней. Для продления срока годности раствора до 20 дней он должен храниться в холодильнике при температуре +3-+5° C. Замерзание раствора гипохлорита натрия не допускается.

Запрещается смешивать в одном флаконе или одновременно вводить больному раствор гипохлорита натрия вместе с другими медикаментозными средствами (новокаином, антибиотиками, ферментами). Это обусловлено возможным окислением лекарственных средств гипохлоритом натрия, что может снизить или исказить их лечебный эффект, а в ряде случаев привести к образованию токсичных продуктов.

Раствор гипохлорита натрия готовится методом электролиза на аппарате ЭДО-4 из изотонического (0,89%) раствора хлорида натрия, отвечающего требованиям Государственной Фармакопеи РФ (т.е. аптечного приготовления). Приготовление раствора гипохлорита натрия для внутривенного введения осуществляется по схеме:

Также при быстром внутривенном введении раствора гипохлорита натрия (струйно) может возникнуть “эйфоричность” больного, которая проявляется в гиперемии кожи лица, чувстве прилива крови к голове, беспокойстве. Для купирования этого явления необходимо прекратить введение гипохлорита натрия, выждать 5-10 минут (за это время все явления проходят самостоятельно), а затем продолжить инфузию со скоростью 40 капель в минуту.

Расход, обеспечивающий достижение концентрации активного хлора 0,2 %, при плотности тока I = 0,1A/см2 составляет от 6 до 7,5 л/ч в зависимости от концентрации хлорида. Для достижения более высокой концентрации активного хлора 0,4 % необходимо снижение расхода до 2,5÷2,7 л/ч [12]. Проводимость растворов в процессе электрохлорирования меняется незначительно в пределах 3÷5 % от исходной.

Наиболее опасным побочным продуктом электрохлорирования хлорида натрия является газообразный хлор. Было изучено влияние величины межэлектродного расстояния на содержание хлора в отходящих газах при плотности тока 0,1 А/см2. Установлено, что оптимальным является межэлектродное расстояние в 1 мм. При его увеличении до 2 и 3 мм, содержание хлора в отходящих газах возрастает. С другой стороны, увеличение концентрации хлорида натрия более 35 г/л при выбранной плотности тока и межэлектродном расстоянии в 1 мм вызывает существенное возрастание побочных процессов электрохимического восстановления гипохлорита натрия, находящегося в прямой зависимости от интенсивности перемешивания:

Оптимизацию параметров электрохлорирования выполняли на установке со стеклянным реактором объёмом 1 л, содержащим четыре биполярных вертикально расположенных прямоугольных титановых электрода, с окисно-рутениевыми анодами, каждый площадью 60 см2. Зазор между электродами устанавливали одинаковым по всей длине и изменяли с помощью двух горизонтальных изолирующих проставок толщиной 1, 2 или 3 мм. Для дополнительного к газлифту перемешивания реакционной смеси использовали магнитную мешалку, расположенную на дне электролитической ячейки. В качестве источника тока использовали потенциостат-гальваностат Elins Р-150Х. Реактор эксплуатировали либо в проточном либо в непроточном режиме. Раствор хлорида натрия готовили из дистиллированной воды и хлорида натрия категории «х.ч.». В проточном режиме подачу осуществляли с помощью перистальтического насоса Zalimp peristaltic pump Type PP1-05. Концентрацию активного хлора определяли по ГОСТ Р 50551-93 [4] и ГОСТ 18190-72 [5], содержание газообразного хлора в отходящих газах по ГОСТ 6718-93 [6]. Проводимость растворов измеряли кондуктометром HI 9033 фирмы Hanna Ins.

Для обеззараживания относительно небольших объемов воды, например в индивидуальных домовладениях, выгоднее использовать более дешёвые установки непроточного типа. Предварительное охлаждение раствора хлорида натрия до 7÷9 °C позволяет в этом случае обойтись без водяного охлаждения электролизера. На рис. 2 представлены результаты работы электролизера в таком режиме.

При относительно небольшой концентрации хлорида натрия 25 г/л, как видно на рис. 2, происходит практически линейный рост концентрации «активного хлора» в растворе, что свидетельствует о незначительном протекании побочных реакций. Температура возрастает также линейно и во всем диапазоне концентраций остается ниже допустимых значений с учетом возможности локального перегрева реакционной смеси в межэлектродном пространстве. На рис. 2 внизу представлен вид тех же зависимостей при более высокой концентрации хлорида натрия в растворе 35 г/л. От начала электролиза и вплоть до 12 минут концентрация «активного хлора» возрастает практически линейно, при этом темп его накопления превышает характерный для более низкой концентрации NaCl. Затем, на участке от 12 до 17 минут, температура реакционной смеси продолжает линейно возрастать, но концентрация «активного хлора» увеличивается значительно медленнее. Разогрев раствора оказывается выше на 10 °C, а та же концентрация «активного хлора» достигается на 6 минут позже, чем для раствора меньшей концентрации. Это может быть связано с потерей части газообразного хлора из-за активного газовыделения и локальных перегревов, приводящих к протеканию побочных процессов электрохимического окисления гипохлорита:

Целесообразность и клиническая эффективность применения гипохлорита натрия в комплексном лечении больных с крайне тяжелым течением гнойного кератита

Материал и методы. Проведено лечение и динамическое наблюдение 32 больных с крайне тяжелым течением гнойного кератита (32 глаза). Среди них мужчин было 14, женщин – 18. Их средний возраст составил 44,5±3,7 года. Сроки поступления больных в стационар варьировали от 1 до 10 суток от начала заболевания. Основной причиной возникновения гнойного кератита являлась микротравма роговицы.

Результаты и их обсуждение. В первые часы после поступления в стационар двум пациентам контрольной группы и четверым пациентам основной, в связи с наличием глубоких изъязвлений роговицы, сопровождающихся десцеметоцеле и микроперфорациями, была выполнена ургентная тектоническая пересадка роговицы на фоне проводимой массивной антибактериальной терапии.

1. По нашим данным, дополнение традиционной терапии гнойного кератита местным и системным применением ГН существенно улучшает ее клиническую эффективность за счет снижения частоты глубоких изъязвлений с образованием десцеметоцеле и перфораций в 3 раза, сокращения продолжительности воспалительной реакции, ускорения процессов эпителизации и репаративной регенерации в 1,3 раза.

Несмотря на наличие широкого спектра антибактериальных препаратов, процент тяжелых исходов гнойных кератитов остается по–прежнему высоким. Это обусловлено наличием антибиотикоустойчивости патогенной флоры, развитием токсических и аллергических реакций на их введение, дисбактериоза и кандидомикоза, подавления иммунитета [1,11]. Существенным достижением явилась разработка новых антисептиков, относящихся к группе биологических окислителей, к которым не отмечено развития устойчивых штаммов микрофлоры [3]. Среди них особого внимания заслуживает раствор гипохлорита натрия (ГН), получаемый методом электролиза изотонического водного раствора хлорида натрия на аппарате ЭДО–4 (Россия). ГН является антисептиком широкого антибактериального спектра действия и проявляет бактерицидный эффект в отношении грамположительных и грамотрицательных микроорганизмов, грибов, вирусов, простейших [3,7]. К его достоинствам относятся: способность снижать резистентность микрофлоры к антибиотикам, повышать их эффективность, нейтрализовать токсические метаболиты, представленные продуктами распада микробов, лейкоцитов и тканей, оказывать некролитическое действие и устранять нарушения микроциркуляции [4,7,12].

Контроль эффективности лечения осуществлялся с помощью биомикроскопии, а также с применением цитологического исследования соскобов конъюнктивы и оценки лейкоцитарного индекса интоксикации (ЛИИ) сыворотки крови, характеризующей степень эндогенной интоксикации организма [2]. Определение уровня ЛИИ в сыворотке крови выполнялось по методу Кальф–Калифа [2].

Гипохлорит Натрия Опасен

Как мы убедились, процесс дезинфекции воды в бассейне достаточно сложен и включает в себя несколько стадий. Поэтому для полной автоматизации этого процесса и исключения из него «человеческого» фактора были разработаны системы дозирования, состоящие из одного, двух или даже трех насосов-дозаторов, контроллеров, датчиков, электрохимических ячеек и т.д. Их описание можно найти на этой страничке.
Дозирование гипохлорита марки «Э» мало чем отличается от дозирования стабилизированных препаратов на основе гипохлорита натрия марки «А». Разве что появляется необходимость отслеживания общего солесодержания воды в бассейне, поскольку гипохлорит марки «Э», содержит поваренную соль (см. описание процесса получения). Поэтому при его дозировании эта соль поступает в обрабатываемую воду и повышает общее солесодержание (с учетом того, что система рециркуляции замкнута, а общий приток свежей воды составляет всего лишь 10% от объема).

Гипохлорит натрия оказывает довольно сильное коррозионное воздействие на различные материалы. Это обусловлено его высокими окислительными свойствами, которые были рассмотрены нами ранее. Поэтому при подборе конструкционных материалов для изготовления установок очистки воды это необходимо учитывать. В таблице, которая приводится ниже, представлены данные по скорости коррозии некоторых материалов при воздействии на них растворов гипохлорита натрия различной концентрации и при различной температуре. Более подробную информацию по коррозионной устойчивости различных материалов по отношению к растворам ГПХН можно найти в Таблице химической совместимости (в формате rar-архива), размещенной на нашем сайте.
Не менее важно учитывать и то обстоятельство, что фильтрующие загрузки, которые используются для скорых насыпных фильтров, могут изменять свои фильтрующие свойства при воздействии на них ГПХН, точнее активного хлора, например, при подборе фильтрующей среды для процесса каталитического обезжелезивания – катализаторов обезжелезивания.
Не следует забывать, что активный хлор оказывает негативное влияние на мембранные процессы, в частности он вызывает деструкцию мембран обратного осмоса (об этом мы рассказывали в нашей статье «Обратный осмос. Теория и практика применения.»), а при высоком содержании (более 1 мг/л) отрицательно влияет на процессы ионного обмена.
Что касается материалов, из которых следует изготавливать собственно систему дозирования ГПХН, то здесь надо ориентироваться на концентрации активного хлора в рабочих растворах ГПХН, которые, естественно, существенно выше концентраций в обрабатываемой воде. Об этом мы поговорим немного позже.

Рекомендуем прочесть:  Перевод С Снт В Ижс В 2023 Году

Вывод:
Пока хлорирование остается основным методом обеззараживания воды, а какой хлорагент применить: хлор или гипохлорит натрия , надо определять по количеству обрабатываемой воды, ее составу и возможностям организации безопасного процесса производства в каждом конкретном случае. Это задача для проектировщиков.

Именно поэтому в течение многих десятилетий сжиженный хлор являлся наиболее надежным и универсальным средством обеззараживания воды в системах централизованного водоснабжения населенных мест. Казалось бы – почему же не продолжать использовать хлор для обеззараживания воды? Давайте разберемся вместе…
В ГОСТ 6718-93 указано, что: «Жидкий хлор – жидкость янтарного цвета, обладающая раздражающим и удушающим действием. Хлор относится к высоко опасным веществам. Глубоко проникая в дыхательные пути, хлор поражает легочную ткань и вызывает отек легких. Хлор вызывает острые дерматиты с потением, покраснением и отечностью. Большую опасность для пораженного хлором представляют осложнения — воспаление легких и нарушение со стороны сердечно-сосудистой системы. Предельно допустимая концентрация хлора в воздухе рабочей зоны производственных помещений – 1мг/м 3 .»
В учебном пособии профессора Слипченко В. А. «Совершенствование технологии очистки и обеззараживания воды хлором и его соединениями» (Киев, 1997, стр.10) о концентрации хлора в воздухе приведена следующая информация:

Нам хорошо известно, что решающим фактором при приобретении какого-либо пищевого продукта являются его вкусовые характеристики. Поэтому технологи пищевой промышленности неохотно используют средства дезинфекции с хлорсодержащими агентами, поскольку активный хлор уж очень «активно влияет» на вкус и запах продукции. Исключение составляет наружная дезинфекция технологического оборудования, ввиду того, что хлор обладает замечательным пролонгирующим действием. Гипохлорит натрия относится к числу таких средств. Обычно для дезинфекции технологического оборудования применяют раствор ГПХН, содержащий 30-40 мг/л активного хлора. Бактерицидное действие гипохлорита натрия проявляется после нанесения раствора при 20-25оС и его экспозиции в течение 3-5 минут. Правда, в этом случае надо учитывать коррозионную активность растворов ГПХН, поэтому для снижения коррозирующего действия используют смесь гипохлорита натрия, каустической соды и метасиликата натрия (препарат «Гипохлор»). Коррозионная активность этого препарата в 10-15 раз меньше, чем обычного гипохлорита натрия.
Что касается обработки внутренних полостей технологического оборудования пищевой промышленности, то ГПХН активно вытесняется препаратами, не содержащими хлор.

Что в Белизне тебе моей или Справочное пособие по гипохлориту натрия («хлорке»)

Так что, вполне себе вариант снижения количества микотоксинов в подозрительных фруктах и овощах — это купание их в щелочном гипохлорите натрия с последующим обычным мытьем. При таком варианте обработки убиваются практически все возможные «поверхностные зайцы».

Взвешиваем 1 г крахмала (кукурузного, картофельного и т.п., хоть картошку натирайте и заваривайте, но! но не забудьте профильтровать 🙂 ) и размешиваем с 10 мл дистиллированной воды. Затем кипятим в стакане 90 мл дистиллированной воды и когда закипела — вливаем наши 10 мл с крахмалом. Варим, перемешивая 2-3 минуты. Используем свежеприготовленным.

образец 1. хлор 19.32 г/л = (NaOCl 20, 29 г/л) = 2,029 % раствор
образец 2. хлор 5.67 г/л = (NaOCl 5, 96 г/л) = 0,596 % раствор
образец 3. хлор 32.26 г/л = (NaOCl 33, 87 г/л) = 3,387 % раствор
образец 4. хлор 21.27 г/л = (NaOCl 22, 33 г/л) = 2,233 % раствор
образец 5. хлор 20.74 г/л = (NaOCl 21, 76 г/л) = 2,176 % раствор
образец 6. хлор 18.97 г/л = (NaOCl 19, 91 г/л) = 1,991 % раствор
образец 7. хлор 14.18 г/л = (NaOCl 14, 89 г/л) = 1,489 % раствор

На Западе также активно используется т.н. «раствор Дакина» (почти уверен, что у нас такого ничего нет, у нас многие лекарства и растворы заменяет панацея -> «авось пронесет») он же раствор Карреля-Дакина, он же жидкость Карреля-Дакина. Раствор этот представляет собой разбавленный раствор гипохлорита натрия (от 0,4% до 0,5%) с добавкой стабилизирующих ингредиентов (борная кислота или пищевая сода), и активно используется в качестве антисептика для очистки ран/обработки ожогов и т.п (метода приготовления для интересующихся). Такой раствор показывает эффективность дезинфицирования для некоторых микроорганизмов даже с концентрацией 0,025%.

Предисловие от автора. Смотрю колонку «сейчас читают» на хабре и с сожалением вижу, что принцип «пока гром не грянет — мужик не перекрестится» работает даже здесь. Один сплошной коронавирус. И вспоминается сразу мне моя статья, опубликованная в конце января (Коронавирус 2023-nCoV. FAQ по защите органов дыхания и дезинфекции) у которой 30% минусов были с пометкой «не соответствует тематике Хабра». Соответствовать, видимо, начинает лишь тогда, когда указание сверху поступит…

Гипохлорит Натрия Опасен

  • По содержанию остаточного активного хлора – 0,3-0,5 мг/л (свободный хлор) и 0,8-1,2 мг/л (связанный хлор);
  • По микробиологическим показателям: ТКБ, ОКБ — отсутствие, ОМЧ — не более 50 КОЕ/мл, колифаги, споры сульфитредуцирующих клостридий, цисты лямблий — отсутствие

5.1.При ингаляционном отравлении (при вдыхании) Гипохлоритом натрия необходимо вывести пострадавшего из загазованной среды, обеспечить покой и согревание. Вдыхание распыленного 2% раствора тиосульфата натрия, щелочных растворов (питьевой соды, буры). Произвести ингаляцию кислородом. При остановке дыхания сделать искусственное дыхание методом «рот в рот».

1.5.При соответствующих концентрациях в окружающей среде Гипохлорит натрия может вызвать поражение живых организмов, разрушать растительные ткани. При попадании в водные объекты вызывает изменение органолептических свойств воды, процессов самоочищения воды в водных объектах.

4.4.Индивидуальная защита персонала должна осуществляться с применением специальной одежды в соответствии с ГОСТ 12.4.011-89 и индивидуальных средств защиты: универсальных респираторов типа «РПГ-67», «РУ-60М» с патроном марки В, противогазов марок В или ВКФ по ГОСТ 12.4.121- 83, перчаток резиновых, сапог резиновых, очков защитных по ГОСТ 12.4.013-85.

1.4.Гипохлорит натрия по степени воздействия на организм человека по ГОСТ 12.1.007-76 относится ко 2 классу высоко опасных веществ. Сильный окислитель, вызывает раздражение кожных покровов и слизистых оболочек — попадание на кожу может привести к ожогам, а в глаза — жжению и слезотечению.

Целесообразность и клиническая эффективность применения гипохлорита натрия в комплексном лечении больных с крайне тяжелым течением гнойного кератита

Оценка степени тяжести гнойного кератита осуществлялась по наличию и выраженности размеров инфильтрата, глубины поражения, по состоянию эндотелия роговицы, содержимому передней камеры и радужной оболочки. Их интенсивность, кодированная в баллах, и являлась критерием тяжести патологического процесса [Рац. предложение № 2208 от 12.11.2002]. Тяжесть патологического процесса в роговице в среднем составляла 22,5±2,2 балла.

Несмотря на наличие широкого спектра антибактериальных препаратов, процент тяжелых исходов гнойных кератитов остается по–прежнему высоким. Это обусловлено наличием антибиотикоустойчивости патогенной флоры, развитием токсических и аллергических реакций на их введение, дисбактериоза и кандидомикоза, подавления иммунитета [1,11]. Существенным достижением явилась разработка новых антисептиков, относящихся к группе биологических окислителей, к которым не отмечено развития устойчивых штаммов микрофлоры [3]. Среди них особого внимания заслуживает раствор гипохлорита натрия (ГН), получаемый методом электролиза изотонического водного раствора хлорида натрия на аппарате ЭДО–4 (Россия). ГН является антисептиком широкого антибактериального спектра действия и проявляет бактерицидный эффект в отношении грамположительных и грамотрицательных микроорганизмов, грибов, вирусов, простейших [3,7]. К его достоинствам относятся: способность снижать резистентность микрофлоры к антибиотикам, повышать их эффективность, нейтрализовать токсические метаболиты, представленные продуктами распада микробов, лейкоцитов и тканей, оказывать некролитическое действие и устранять нарушения микроциркуляции [4,7,12].

Цитологические исследования проводились в момент поступления в стационар, далее – каждые 2–3 суток лечения. Определялся тип цитограмм: некротический, дегенеративно–воспалительный, воспалительный, воспалительно–регенераторный, регенераторный [5]. Все пациенты проходили осмотр. Срок наблюдения составил 30 дней.

Патологические изменения характеризовались наличием абсцесса, либо язвенного фокуса в роговице, захватывающего чаще глубокие (20 глаз – 62,5%), реже – только средние слои роговичной стромы (12 глаз – 37,5%). Размеры инфильтратов роговицы варьировали от 6 до 10 мм, соответственно им отмечался выраженный воспалительный отек с грубыми складками десцеметовой мембраны, распространяющимися на периферию роговицы. Во всех случаях гипопион превышал 5 мм. В 12,6% глаз имелось десцеметоцеле и в 6,2% – микроперфорация роговицы. У всех пациентов наблюдались явления сопутствующего выраженного фибринозно–пластического иридоциклита. По критериям балльной оценки все данные случаи были расценены, как крайне тяжелая степень течения гнойного кератита.

Conclusion: Basing on clinical observations it’s advisable to recommend sodium hypochlorite in complex treatment for sanation of purulent corneal infection. In reasonably severe form of purulent keratitis is enough to use sodium hypochlorite topically. In severe and extremely severe forms of purulent keratitis is advisable to combine topical and systemic usage of sodium hypochlorite.

Научный журнал Фундаментальные исследования ISSN 1812-7339 Перечень ВАК ИФ РИНЦ 1,749

Гипохлорит натрия относится к новому поколению реагентов, используемых для обеззараживания воды в качестве альтернативы газообразному хлору. Применяется или товарный (технический) гипохлорит (ТГ), представляющий собой высококонцентрированный сильнощелочной раствор, производимый на химических заводах и содержащий 14 % активного хлора, или низкоконцентрированный раствор (ЭГ), производящийся на месте использования в необходимом количестве путем электролиза хлорида натрия (метод электрохлорирования). Из-за высокой концентрации товарный гипохлорит разлагается быстрее получаемого непосредственно на месте в электролизере ЭГ. Это разложение гипохлорита до хлората приводит как к потере продукта, так и к возникновению нежелательного побочного продукта, попадающего в воду. В случае 14 % ТГ 0,6 % активного хлора преобразуется в хлорат уже в течение первых суток хранения при 22 °C [1], так что при транспортировке и хранении его может накопиться значительное количество. Производство ЭГ на месте потребления по мере необходимости сокращает срок его хранения перед использованием и резко снижает потери. ТГ имеет высокое значение водородного показателя (pH = 12) для обеспечения стабильности продукта. Поэтому при обеззараживании воды с высоким содержанием катионов кальция и магния («жесткая вода») возможно образование нерастворимых карбонатов и гидроксидов, для удаления которых необходима фильтрация воды перед использованием. Водородный показатель растворов ЭГ не превышает 9,5 и подобной проблемы не возникает, однако при приготовлении раствора для электрохлорирования все же лучше использовать дистиллированную или умягченную воду. Это позволяет сократить расходы на периодическую чистку электродов. Кроме того, в [2, с. 852] показано, что в присутствии карбонат- и сульфат-анионов выход по току электрохлорирования снижается, причем тем сильнее, чем выше плотность тока. Для обеззараживания технологической воды вместо исходного раствора хлорида натрия может использоваться морская вода, при этом поверхность электродов покрывается более рыхлым слоем солей, чем при использовании неумягчённой воды [3]. Наконец, ТГ содержит потенциально канцерогенный бромат, концентрация которого не должна превышать в странах ЕС 10 мкг/л. ЭГ с низким содержанием бромата может быть получен благодаря использованию хлорида натрия с низким содержанием бромида. Эти факторы обеспечивают все более широкое применение систем электрохлорирования вместо установок дозирования технического гипохлорита.

Рекомендуем прочесть:  Должен Ли После Удержаний Из Пенсии По Исполнительному Листу У Должника Оставаться Прожиточный Минимум

Расход, обеспечивающий достижение концентрации активного хлора 0,2 %, при плотности тока I = 0,1A/см2 составляет от 6 до 7,5 л/ч в зависимости от концентрации хлорида. Для достижения более высокой концентрации активного хлора 0,4 % необходимо снижение расхода до 2,5÷2,7 л/ч [12]. Проводимость растворов в процессе электрохлорирования меняется незначительно в пределах 3÷5 % от исходной.

При выборе оптимальной температуры процесса необходимо учитывать, что окисно-рутениевый анод наиболее устойчив в агрессивной среде хлоратора при температурах не ниже 18 °С [8]. С другой стороны, чрезмерный разогрев электролита неблагоприятно сказывается на выходе гипохлорита натрия, поэтому оптимальная температура составляет 40–45 °С [9, 10]. Для проточного электролизера температура электролита тем выше, чем меньше расход и, следовательно, больше время пребывания электролита в реакторе. Также разогрев электролита, при прочих одинаковых условиях, больше там, где ниже исходная концентрация хлорида натрия. Опытным путем установлено, что в широком диапазоне расходов от 0,8 до 6,0 л/ч при использовании исходного раствора с температурой не более 20 °С превышения оптимальной температуры не происходит. Водородный показатель растворов в процессе электролиза увеличивается до величин pH = 8,8÷9,4 по мере увеличения времени электролиза и роста концентрации соли из-за восстановления молекул воды. Из рис. 1 видно, что соотношение между содержанием гипохлорит-иона и хлорноватистой кислоты определяется протеканием реакций гидролиза гипохлорита натрия и диссоциации хлорноватистой кислоты и при pH = 9,4 происходит практически полный переход хлорноватистой кислоты в гипохлорит натрия.

Оптимизацию параметров электрохлорирования выполняли на установке со стеклянным реактором объёмом 1 л, содержащим четыре биполярных вертикально расположенных прямоугольных титановых электрода, с окисно-рутениевыми анодами, каждый площадью 60 см2. Зазор между электродами устанавливали одинаковым по всей длине и изменяли с помощью двух горизонтальных изолирующих проставок толщиной 1, 2 или 3 мм. Для дополнительного к газлифту перемешивания реакционной смеси использовали магнитную мешалку, расположенную на дне электролитической ячейки. В качестве источника тока использовали потенциостат-гальваностат Elins Р-150Х. Реактор эксплуатировали либо в проточном либо в непроточном режиме. Раствор хлорида натрия готовили из дистиллированной воды и хлорида натрия категории «х.ч.». В проточном режиме подачу осуществляли с помощью перистальтического насоса Zalimp peristaltic pump Type PP1-05. Концентрацию активного хлора определяли по ГОСТ Р 50551-93 [4] и ГОСТ 18190-72 [5], содержание газообразного хлора в отходящих газах по ГОСТ 6718-93 [6]. Проводимость растворов измеряли кондуктометром HI 9033 фирмы Hanna Ins.

Наряду с определением концентрации активного хлора иодометрическим методом по ГОСТ Р 50551-93, было проведено определение концентрации титрованием метиловым оранжевым по ГОСТ 18190-72 с 25-кратным разбавлением 10 мл аликвоты. Методика с метиловым оранжевым менее трудоёмка и показала хорошее совпадение результатов для полученных разбавленных растворов гипохлорита натрия.

При средней и тяжёлой стадии интоксикации пострадавший госпитализируется и наблюдается врачами. Поскольку специфический антидот пока не изобретён, первая помощь при отравлении заключается в борьбе с интоксикацией: назначаются оксигенотерапия, лекарственные средства для восстановления водно-минерального баланса, проводится и лечение пострадавших внутренних органов: сердца, лёгких, нервной системы.

Отравление хлором у домашних животных может проявиться нарушением координации движений, помутнением роговицы, расширением зрачков, рвотой и отказом от еды. Первую медицинскую помощь при отравлении домашнему любимцу окажет ветеринарный врач. Не откладывайте обращение к специалисту!

При остром отравлении хлором в организме происходят сложные биохимические реакции. В частности, соединения хлора, попадая на слизистые оболочки дыхательных путей, рта и глаз, образуют соляную кислоту и активный кислород, в результате чего развивается химический ожог слизистых оболочек.

  • вынести пострадавшего на свежий воздух;
  • проветрить загрязнённую комнату;
  • раствором пищевой соды промыть глаза, рот и нос пострадавшего;
  • расстегнуть стесняющую дыхание одежду;
  • вызвать «Скорую Помощь».
  • неотложная помощь при отравлении хлором, попавшим в пищевод и желудок, заключается в промывании желудка и приёма сорбента Энтеросгель;
  • при первых признаках отравления (поражении слизистых оболочек) можно дать антигистаминные препараты.

Хозяевам домашних питомцев на заметку: запах хлора очень привлекателен для животных — он напоминает животным запах феромонов в моче. Храните хлорсодержащие бытовые средства в недоступных местах, а при обработке ванн, раковин и унитазов держите животное в другом помещении.

В условиях стационара пациент получает антибиотики, спазмолитики, бронходилататоры, отхаркивающие медикаменты, гормоны. Показано проведение щелочных ингаляций. Рекомендовано назначение глюконата кальция внутривенно, антигистаминных средств. Для коррекции водно-солевого баланса проводится инфузия кристаллоидных растворов. При отеке легких применяются диуретики, отвлекающие препараты, альбумин. Необходим перевод пострадавшего на ИВЛ. Отдельные клиники применяют магнитогематерапию, ультрафиолетовой облучение крови, инфузию гипохлорита натрия.

Смертельные отравления приводят к возникновению судорог клонического типа. Происходит непроизвольное мочеиспускание, дефекация. При осмотре – диффузный цианоз, вздутие вен шеи, экзофтальм, конвульсии конечностей, утрата сознания. Первая помощь с применением бронхолитиков не позволяет купировать ларингоспазм. Смерть наступает спустя несколько минут. Причина – прогрессирующая асфиксия, сердечно-легочная недостаточность. При молниеносной разновидности признаки гипоксии и судороги отсутствуют. На момент осмотра – асистолия, отсутствие сознания, дыхания.

Отравление хлором сопровождается болевым синдромом. Для его устранения в глаза закапывают дикаин, внутримышечно вводят ненаркотические анальгетики. При выраженной болезненности может быть использован морфин или промедол. Применять их следует с осторожностью, под контролем дыхания. Человеку дают выпить щелочную минеральную воду или молоко с добавлением столовой соды. При психомоторном возбуждении показаны седативные средства. Транспортировка осуществляется на носилках, самостоятельное перемещение запрещено независимо от самочувствия.

По причинам отравление хлором подразделяется на боевое, промышленное, бытовое, случайное. Большого практического значения этот критерий не имеет. Он важен исключительно как статистический показатель, который оценивается при разработке мер профилактики. Значимой клинически считается пятиступенчатая классификация отравления, в основе которой лежит тяжесть поражения:

Отравление развивается при превышении предельно допустимой концентрации хлора в окружающем пространстве. ПДК для жилых комнат составляет 0,03 мг/кубический метр, для производственных помещений – 1 мг/м3. Раздражающей дозой считается 10 мг/метр в кубе, смертельной – 100-200 мг при воздействии на протяжении часа. Концентрация 2500 мг/м3 приводит к гибели пострадавшего уже спустя 5 минут. Хлор относится к категории нестойких быстродействующих аварийно-химических отравляющих веществ (АХОВ). При утечке образует облако с высокой концентрацией, которое сохраняется 10-30 минут, после чего рассеивается. Времени существования подобной зоны достаточно, чтобы спровоцировать у пострадавшего симптомы острого химического поражения.

Большой интерес представляет производство раствора низкоконцентрированного электрохимического гипохлорита натрия с содержанием активной части около 6 г/л на месте его потребления электролизом слабоконцентрированных растворов поваренной соли, морской воды или природных минерализованных хлоридных вод [6, 7, 11]. Данный метод является наиболее безопасным и экономически эффективным.

Для получения гипохлорита натрия использовали трехпроцентный раствор поваренной соли объемом 400мл, модель электролизера непроточного типа. Во время эксперимента плотность тока была величиной переменной. Нам важно было исследовать изменение концентрации активного хлора при изменении параметров времени и плотности тока. В своих расчетах мы использовали стандартные методики, которые представлены в приложениях [1–5].

В зависимости от условий электролиза, в частности, концентрации NaCl, плотности тока и условий перемешивания электролита, гидролиз хлора по реакции (1.5) может происходить преимущественно в диффузионном слое, либо одновременно и в глубине раствора [6,7]. Далее соляная и хлорноватистая кислоты взаимодействуют с полученной на катоде щелочью с образованием раствора гипохлорита натрия:

Иллюзии по поводу чистоты питьевой воды рухнули в тот день, когда был изобретен микроскоп. С тех пор минуло более трехсот лет, однако, как это ни прискорбно, вода продолжает давать жизнь не только человеку, но и многим микроорганизмам, подчас представляющим громадную опасность. Казалось бы, что может быть проще и привычнее: мы открываем кран, наполняем стакан и пьем.

В коническую колбу отбирали пробу гипохлорита объемом 1–2 мл и добавляли 10–15 мл дистиллированной воды, затем приливали 5–10 мл раствора соляной кислоты и, перемешивая пробу, добавляют 0,5 г йодистого калия. Выделившийся йод титровали 0,01н раствором тиосульфата натрия до получения светло-желтой окраски. После этого прибавляли около 1 мл раствора крахмала и титровали до исчезновения синего окрашивания.

Применение дезинфицирующих средств: обзор

Используя эти химические реакции, можно непосредственно в пенной пушке или пеногенераторе получать пену, содержащую 5 ppm диоксида хлора. Диоксид хлора активен против широкого спектра микроорганизмов, в том числе спорообразующие бактерии и вирусы. Его действие на микроорганизмы заключается в ингибировании воспроизведения микроорганизмов, поскольку диоксид хлора является сильным окислителем.

Перекись водорода используется в пищевой промышленности в различных концентрациях от 3% и до 90% применяется в пищевой промышленности. Перекисью водорода обрабатывают поверхность упаковки для фруктов. В концентрации 6% перекись водорода проявляет бактерицидные свойства. В общем можно сказать, что перекись водорода более активна в отношении грам — положительных бактерий, чем грам — отрицательных. Уничтожение спор спорообразующих бактерий происходит при обработке поверхности перекись водорода в концентрации от 10 до 30%. Этот антимикробный агент может использоваться на любом оборудовании и поверхностях. В случае использования концентрированных растворов пероксида и опасения возможности коррозии оборудования следует использовать антикоррозионные добавки. Было показано, что перекись водорода убивает Listeria monocytogenes на латексных перчатках. Перекись водорода используют для обработки различных поверхностей из полимерных материалов, смол и каучуков.

Химические соединения, предназначенные для использования в пищевой промышленности в качестве дезинфектантов, отличаются химической структурой, активностью против различного вида микроорганизмов и условиями, при которых они проявляют максимальную активность. В общем, случае справедлива закономерность – чем выше концентрация дезинфицирующего средства, тем быстрее и эффективнее его действие. Чтобы выбрать эффективное дезинфицирующее средство, нужно экспериментальным или теоретическим путем определить потенциальные патогенные микроорганизмы и убедиться в том, что, выбранный дезинфектант активен в отношении этих микроорганизмов. Поскольку химические дезинфектанты не обладают высокой проникающей способностью, микроорганизмы в трещинах, царапинах и других неровностях поверхности, внутри минеральных загрязнений могут быть не полностью уничтожены после обработки. Чтобы действие химических дезинфектантов было эффективно, поверхность перед обработкой должна быть тщательно очищена.

  • эффективность в отношении различных бактерий, грибков и вирусов;
  • доступность в жидкой и гранулированной форме;
  • соли жесткости воды оказывают слабое влияние на активность;
  • при использовании хлорсодержащих соединений не происходит образования токсичных побочных продуктов;

Наиболее известными дезинфицирующими агентами этого класса являются глютаровый альдегид и формальдегид. Альдегиды активны в отношении бактерий, вирусов, плесневых грибов и спор. Однако этот класс соединений очень быстро инактивируется протеинами, поэтому для достижения необходимого эффекта дезинфекции поверхность должна быть предварительно тщательно очищена. Известно, что глютаровый альдегид вызывает сильную денатурацию белка и потому, в случае некачественной очистки, фиксирует загрязнения на обрабатываемой поверхности.

Adblock
detector